Unit Circle With Tangent Chart

Wiki info

Triangles constructed on the unit circle can also be used to illustrate the periodicity of the trigonometric functions. First, construct a radius OA from the origin to a point P(x1,y1) on the unit circle such that an angle t with 0 < t < π/2 is formed with the positive arm of the x-axis. Now consider a point Q(x1,0) and line segments PQ ⊥ OQ. The result is a right triangle △OPQ with ∠QOP = t. Because PQ has length y1, OQ length x1, and OA length 1, sin(t) = y1 and cos(t) = x1. Having established these equivalences, take another radius OR from the origin to a point R(−x1,y1) on the circle such that the same angle t is formed with the negative arm of the x-axis. Now consider a point S(−x1,0) and line segments RS ⊥ OS. The result is a right triangle △ORS with ∠SOR = t. It can hence be seen that, because ∠ROQ = π − t, R is at (cos(π − t),sin(π − t)) in the same way that P is at (cos(t),sin(t)). The conclusion is that, since (−x1,y1) is the same as (cos(π − t),sin(π − t)) and (x1,y1) is the same as (cos(t),sin(t)), it is true that sin(t) = sin(π − t) and −cos(t) = cos(π − t). It may be inferred in a similar manner that tan(π − t) = −tan(t), since tan(t) = y1/x1 and tan(π − t) = y1/−x1. A simple demonstration of the above can be seen in the equality sin(π/4) = sin(3π/4) = 1/√2.

Keywords: unitymedia webmail, unitymedia, unitymedia speedtest, united airlines, unitybox de login, unitymedia login, unitymedia störung, unitybox webmail posteingang,


Photogallery Unit Circle With Tangent Chart:


Unit Circle With Tangent Chart


Unit Circle With Tangent Chart


Unit Circle With Tangent Chart


Unit Circle With Tangent Chart


Unit Circle With Tangent Chart


Unit Circle With Tangent Chart


Unit Circle With Tangent Chart


Unit Circle With Tangent Chart


Unit Circle With Tangent Chart


Unit Circle With Tangent Chart


Unit Circle With Tangent Chart


Unit Circle With Tangent Chart


Unit Circle With Tangent Chart